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Introduction

I Minimal Model Program for projective varieties of dimension 3
over C was fully established in the late 80’s and early 90’s due
the work of Ried, Mori, Miyaoka, Matsuki, Kawamata, Kollár,
Shokurov and others.

I There was also a major breakthrough in higher dimensions in
2006 due to Birkar, Cascini, Hacon and McKernan. The
authors proved the existence of flip and the existence of
minimal model for varieties of general type, for projective
varieties over C of arbitrary dimension.

I In the analytic category, one could ask a similar question: “Is
it possible to develop a minimal model program for compact
Kähler manifolds?”
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Introduction (continued...)

I Let X be a compact Kähler manifold. Mori’s Bend and
Break fails on X .

I Another major obstacle: Base-point free theorem, which
gives us the contraction of KX -negative extremal rays for X
projective. Let’s recall the Base-point free theorem:

Theorem
Let X be a smooth projective variety and D is a nef Cartier divisor.
If aD − KX is nef and big, then mD is semi-ample for all m� 0,
i.e. there is a contraction f : X → Y to a projective variety Y such
that mD = f ∗HY , where HY is an ample divisor on Y .

I If a Kähler manifold poses a big line bundle, then it is
projective. So Base-point free theorem is not available for us.
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Introduction (continued...)

I In fact, there are more troubles: The Mori cone NE(X ) could
be too small to be useful when X is Kähler.

I There are examples of compact Kähler manifolds X s.t. it
doesn’t have any positive dimensional subvariety, e.g. simple
tori.

I For more discussion on these kind of examples, see: ‘Compact
Kähler 3-folds without non-trivial subvarieties.’ by Campana,
Demailly abd Verbitsky.

I So we need to enlarge the vectors spaces NS(X )R,N1(X ) as
well as the cones Nef(X ),NE(X ), etc.
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New Tools

I Let X be a normal compact analytic variety.

I The Bott-Chern cohomology H1,1
BC(X ) is defined as the

d-closed (1, 1)-forms with local potentials modulo i∂∂̄ϕ,
where ϕ is a smooth function on X .

I H1,1
BC(X ) can also be defined as the quotient space of d-closed

(1, 1)-currents with local potentials modulo i∂∂̄u, where u is
a distribution on X .

I When X is a compact Kähler manifold, H1,1
BC(X ) is the usual

H1,1(X ).

I We define N1(X ) := H1,1
BC(X ).
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New Tools (Continued. . . )

I Let X be a normal compact analytic variety.

I N1(X ) is defined as the space of all real closed bi-dimension
(1, 1) currents T module the equivalence relation:
T ≡ T ′ ⇔ T (α) = T ′(α) for all real closed (1, 1) forms
with α local potentials.

I When X has rational singularities, N1(X )× N1(X )→ R is a
perfect pairing. In particular, N1(X )∗ ∼= N1(X ).

I When X is a compact Kähler manifold,
N1(X ) ∼= Hn−1,n−1(X ).
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New Phenomenon

I In general, NS(X ) ⊆ H1,1
BC(X ). This inclusion could be strict

even when X is projective.

I For example, for any smooth projective K3 surface X ,
h1,1(X ) = 20, but there are K3 surfaces with Picard number
smaller than 20.
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Kähler-Mori Cone

I We define the Kähler-Mori cone NA(X ) ⊆ N1(X ) to be the
closed cone generated by the classes of positive closed
currents. Note that for any curve C ⊆ X , the associated
currents of integration TC defined as TC (η) :=

∫
C η for all

closed (1, 1) forms η, is closed positive bi-dimension (1, 1)
currents. Thus NE(X ) ⊆ NA(X ).
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New Tools (Continued. . . )

I An analytic variety X is called Kähler if there exists a Kähler
form ω, i.e., a positive closed real (1, 1) form ω ∈ A1,1

R (X )
such that the following holds: for every point x ∈ X there
exists an open nbhd x ∈ U ⊆ X and a closed embedding
ιU : U ↪→ V into an open subset V ⊆ CN , and a strictly
plurisubharmonic C∞-function f : V → R with
ω|U∩Xsm = (i∂∂̄f )|U∩Xsm .

I Let u ∈ H1,1
BC(X ) be a class represented by a (1, 1) form α

with local potentials. Then u is called nef if for some Kähler
form ω on X and for every ε > 0 there exists fε ∈ A0(X ) such
that α + i∂∂̄fε ≥ −εω.

I Let K ⊆ N1(X ) is the open convex cone generated by the
classes of Kähler forms, Nef(X ) ⊆ H1,1

BC(X ) is the closed of
cone of nef classes. Then from a theorem of Demailly it
follows that Nef(X ) = K.
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then α is a represented by a Kähler form.
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Some bad new. . .

I Let X be a compact Kähler manifold and L is a line bundle on
X .

I If L is nef in the algebraic sense, i.e.
∫
C c1(L) > 0 for all curve

C ⊆ X , it doesn’t necessarily imply that c1(L) ∈ Nef(X ) = K.

I Example: Let X be a smooth compact Kähler surface s.t.
a(X ) := tr.deg.CC(X ) = 1. Then there is a f : X → C
proper morphism such that all the curve in X are vertical over
C .

I Let p ∈ C and D = −p ∈ NS(C ). Then f ∗D · Γ ≥ 0 for all
curves Γ ⊆ X but f ∗D is anti-effective, so c1(f ∗D) 6∈ Nef(X ).
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Escape from the disaster

I Let X be a normal compact Kähler 3-fold with Q-factorial
terminal singularities.

I Assume that KX is pseudo-effective. Then KX is
algebraically nef if and only if it is analytically nef.

I Proof: The if part is obvious. So assume that KX is
algebraically nef but not analytically nef. Boucksom-Zariski
decomposition KX ≡

∑
aiSi + β, where ai ≥ 0 and

β ∈ H1,1
BC(X ) is nef in codimension 1, i.e. β|D is

pseudo-effective for any prime Weil divisor D.

I Since KX and KX |C is pseudo-effective for every curve
C ⊆ X , by Păun’s criteria, KX |S is not pseudo-effective.

I Then from the decomposition KX ≡
∑

aiSi + β it follows
that S = Si for some i . From adjunction it follows that KS is
not pseudo-effective, so S is Moishezon.

I {Ct} ⊆ S covering family. Then KX · Ct = (KX |S) · Ct < 0,
since KX |S is not pseudo-effective.This is a contradiction.



Escape from the disaster

I Let X be a normal compact Kähler 3-fold with Q-factorial
terminal singularities.

I Assume that KX is pseudo-effective. Then KX is
algebraically nef if and only if it is analytically nef.

I Proof: The if part is obvious. So assume that KX is
algebraically nef but not analytically nef. Boucksom-Zariski
decomposition KX ≡

∑
aiSi + β, where ai ≥ 0 and

β ∈ H1,1
BC(X ) is nef in codimension 1, i.e. β|D is

pseudo-effective for any prime Weil divisor D.

I Since KX and KX |C is pseudo-effective for every curve
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Cone Theorem in dim 3 [HP16]

I Let X be a normal compact Kähler 3-fold with Q-factorial
terminal singularities.

I If KX is pseudo-effective, but not nef, then there is a
countable family of rational curves {Ci}i∈I such that
0 < −KX · Ci ≤ 6 and

NA(X ) = NA(X )KX≥0 +
∑
i∈I

R+ · [Ci ].

I When KX is not pseudo-effective, the cone decomposition
looks a bit different than above.
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Theorem (Höring and Perternell, 2015-2016)

Let X is be Q-factorial compact Kähler 3-fold with terminal
singularities. If KX is pseudo-effective, then there is a finite
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φ : X = X0 99K X1 99K · · · 99K Xn such that KXn is nef.
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Existence of Log MMP

Theorem (D- and Hacon, 2020)

Let (X ,∆) be a dlt pair, where X is a Q-factorial compact Kähler
3-fold. If KX + ∆ is pseudo-effective, then there exists a finite
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φ : X = X0 99K X1 99K · · · 99K Xn such that KXn + φ∗∆ is nef.
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Existence and Termination of Flips

I If f : X → Z is a flipping contraction, then we get the
existence of flip f + : X+ → Z for FREE!

I If X has terminal singularity, then the existence of f + directly
follows from Mori’s proof, since his proof is analytic.

I If (X ,∆) is a log canonical pair and f is a (KX + ∆)-flipping
contraction, then the existence of f + is due to Shokurov,
because his proof is also analytic.

I Termination of flips is also analytic proof, that works too!

I So the main difficulty for us is the existence of contractions of
negative extremal rays.
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Base-point free conjecture on Kähler Variety

In the analytic category, there is a Base-point free conjecture
which mimics the statement of the Base-point free theorem in the
projective case with divisors replaced by cohomology classes.

Conjecture

Let (X ,∆ ≥ 0) be a klt pair, where X is a compact Kähler variety.
Let α ∈ H1,1

BC(X ) be a nef class such that α− (KX + ∆) is nef and
big. Then there is a proper morphism with connected fiber
f : X → Z to a compact Kähler variety Z with rational singularity
and α = f ∗ωZ , where ωZ is a Kähler class on Z.

We show that this conjecture holds in dimension 3.

Theorem (D- and Hacon)

Let (X ,∆ ≥ 0) be a klt pair, where X is a compact Kähler 3-fold.
Let α ∈ H1,1

BC(X ) be a nef class such that α− (KX + ∆) is nef and
big. Then there is a proper morphism with connected fibers
f : X → Z to a compact Kähler variety Z with rational singularity
and α = f ∗ωZ , where ωZ is a Kähler class on Z.
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Base-point free conjecture

I For ∆ = 0, X terminal singularity and α−KX a Kähler class,
this theorem was proved earlier by Tosatti and Zhang [TZ18]
(when α nef but not big) and Höring (when α is nef and big).

I Unfortunately, this theorem is proved in our paper as an
application of the Log MMP, in particular, it can not be used
to prove the contractions of (KX + ∆)-negative extremal rays
of NA(X ).
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Blowing Down Theorem in Analytic Geometry

Theorem (Fujiki 1974)

Let X be normal compact analytic variety and S a Q-Cartier prime
Weil divisor on X with Cartier index m > 0. Let g : S → B be a
contraction and OS(−mS) is f -ample. Then there is normal
compact analytic variety Y containing B and a bimeromorphic map
f : X → Y such that f |S = g and f |X\S is isomorphic to Y \ B
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Contraction of KX -negative extremal rays (Höring and
Peternell, 2015-16)

I Let X be a Q-factorial compact Kähler 3-fold with terminal
singularities. Assume that KX is pseudo-effective and let R be
a KX -negative extremal ray of NA(X ).

I It can be shown (as in the projective case) that there exists a
nef class α ∈ N1(X ) = H1,1

BC(X ) such that

α⊥ ∩ NA(X ) := {γ ∈ NA(X ) | α · γ = 0} = R.

I Up to a rescaling of α it follows that α−KX is a Kähler class,
say α = KX + ω, where ω is a Kähler class on X .

I Note that α = KX + ω is big, and hence α3 > 0, since it is a
sum of a pseudo-effective class and a Kähler class.
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Contraction of KX -negative extremal rays (continued...)

I The null locus

Null(α) :=
⋃

V⊆X , dimV>0, αdim V ·V=0

V ( X

is a countable union of proper subvarieties of X .

I By a theorem of Collins and Tosatti [CT15], Null(α) is a
closed analytic subset of X .

I With some work it can be shown that Null(α) is exactly the
locus covered by the curves in the extremal ray R.

I Now there are three cases:

1. Null(α) is a finite union of curves.
2. Null(α) is an irreducible surface S and α|S ≡ 0.
3. Null(α) is an irreducible surface S and α|S 6≡ 0.
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Filliping contraction (Sketch of the Proof)

Case I: Assume that Z = Null(α) is a finite union of curves.

I In this case the morphism g is simply the map that sends the
connected component of Z to different points.

I The difficult part here is to check that the conormal sheaf of
Z = Null(α) restricted to the fibers of g is ample.

I By a theorem of Boucksom [Bou04] and Collins and Tosatti
[CT15] there exists a projective bimeromorphic morphism
µ : X ′ → X from a Kähler manifold X ′ and a Kähler form ω′

on X ′ such that Null(α) = µ(Ex(µ)) and

µ∗α = ω′ + E ,

where E ≥ 0 is an effective divisor s.t. Supp(E ) = Ex(µ).

I Since for any curve C ⊆ Null(α), α|C ≡ 0, it follows that
−E |E ≡ ω|E , i.e., the conormal sheaf of E is (globally) an
ample divisor on E .
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Flipping and Divisorial contractions (Sketch of the Proof)

I Thus by the blowing down theorem, there is a proper
bimeromorphic morphism π : X ′ → Y which contracts the
connected component of E to points. Then by the Rigidity
lemma, there is a bimeromorphic morphism f : X → Y such
that π factorizes through it. In particular, f contracts the
connected components of Null(α). This is the flipping
contraction.

Case II: Null(α) = S and α|S ≡ 0.

I In this case S · C < 0 for all curves C ⊆ such that [C ] ∈ R.
So with this one can show that α− εS is strictly positive on
NA(X ) \ {0} for some ε > 0.

I Thus α = εS + ω, where ω is a Kähler class on X . In
particular, −S |S ≡ ω|S is an ample divisor on S .

I Therefore by the Bllowing down theorem there is a projective
birmeromorphic f : X → Y such that f (S) = pt.
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Divisorial Contraction (continued...)

Case III: Null(α) = S and α|S 6≡ 0; (this is the hardest case!)
I In this case two arbitrary points of S con not be connected by

a chain of curves which are all α-trivial. In particular, the nef
dimension of α|S is 1.

I But in order to use the nef reduction map and nef dimension
we need to go to the normalization of S , say ν : S̃ → S .

I Then the nef dimension n(ν∗(α|S̃)) = 1. Let g̃ : S̃ → B be
the nef reduction map.

I We want to show that this morphism g̃ descends to a
morphism g : S → B. This turns out to be a surprisingly hard
problem!

I When X has terminal singularity, a computation of
intersection number shows that S is smooth in a nbhd of the
general fibers of g̃ : S̃ → B.

I An explicit computations then shows that g̃ descends to a
morphism g : S → B.

I So we are done again by the blowing down theorem.
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I We want to show that this morphism g̃ descends to a
morphism g : S → B. This turns out to be a surprisingly hard
problem!

I When X has terminal singularity, a computation of
intersection number shows that S is smooth in a nbhd of the
general fibers of g̃ : S̃ → B.

I An explicit computations then shows that g̃ descends to a
morphism g : S → B.

I So we are done again by the blowing down theorem.



Thank you!
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